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A DYNAMIC CONTACT PROBLEM FOR A BILAYERED HALF-SPACE WITH A CAVITY* 

T.G. RUMYANTSEVA, M.G. SELEZNEV and M.V. CHEPIL 

A dynamic contact problem for a bilayered elastic half-space with a deep cylindrical 
cavity. The superposition principle, that enables the boundary value problem to be reduced 
to a system of integral equations, solved by successive approximations in the case of intense 
cavity depth in the underlying half-space,is used to construct the solution. The solution of 
an integral equation of the first kind, whose operator corresponds to the solution of a 
contact problem for a bilayered half-space without a cavity is constructed at each stage of 
application of the method. The free term of the integral equation is a power series in a 
small parameter determining the ratio between the wavelength and the magnitude of the depth 
of the centre of the cavity. To realize the algorithm the solution of the singular integral 
equation is constructed by using approximate factorization of functions. The degree of 
influence of the cavity on the distribution law and the magnitude of the contact stresses 
under the stamp is investigated. 

We consider the problem of exciting antiplane steady harmonic vibrations in an elastic 
bilayered half-space with a horizontal cylindrical cavity of relatively small radius. It is 
assumed that the cavity is completely in the underlying half-space. Let us formulate the 
appropriate boundary value problem. Let an elastic medium occupy a domain 

z > -H U R = Jf(e-' - x)* + I/'> 1, E = alh 

in a dimensionless Cartesian xyz system of coordinates, characterized by values PI. 11, F'1 of 
the density and Lame coefficients for z >0 and f,h,p for --H<z<~. We obtain the 
dimensional coordinates by multiplying the dimensionless coordinates by the cavity radius a, 
while h is the magnitude of the depth of the cavity centre in the half-space. 

The following conditions are given on the boundary of the elastic medium: 

x=-H, uz = / (y) P’, I/ E I; TXi’= (I, y Tz I, I = [c - I,, c + b] (1) 
R = 1, T& =: r (If') .-iot 

The radiation conditions for the elastic wave energy are given at infinity. The motion 
of the medium is described by the Lame equations /l/. 

To a substantial degree, the solution of contact problems of elasticity theory rely on 
an investigation of appropriate problems with homogeneous boundary conditions. The solution 
of the homogeneous problem for a bilayeredspace with acavity relatively deep in a half-space 
is constructed by using the superposition principle /2/ and enables us to analyse the 
corresponding boundary value problem with mixed boundary conditions on a plane surface. 

Let 

t I 1 (y) ciat, Y=I 
XT = 

0, yZI 
(2) 

denote the unknown contact stresses. 
The problem with homogeneous boundary conditions 'on plane and cylindrical boundaries 

reduces to a system of two integral equations in terms of whose solution the displacement 
field in the whole elastic domain is described 
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The displacement field in an elastic medium is described in terms of the solution of 
system (3) by relationships of the form 

Uz = Q(l) + I$), 2 > 0 u R > 1 
I&== UT), --H<zg0 

v!')(z, u) =- -&- 
ts 
X(a)o;'exp[-QZ- iay]da 

.@) (I?, cp) =L 
“7 

z Pl z 
Y,AzH$’ (OIR) erp (imcp) 

In=+--m 

u!3)(+ Y) = - ,_lnp, L ~[I(a)cboz-_(a)ch(a[Z+H])]da 
s 

-iw 

r 

(4) 

ali (a) 
Z(a)=go--- 

m=-ar 
m 

s A-,'oIH$' (~~)expti(marctg(--u)+au)ldu} 
-m 

The shape of the contour T is determined by application of the limit absorption 
principle and is described in 12, 3/. 

Returning to the original boundary value problem with mixed boundary conditions, we have 
an unknown function t(u) in system (3) that characterises the contact stress distribution 
law, i.e., a system of two integral equations with three unknowns t (uL X 0). and Y(i) is 
obtained. We use the first boundary condition of (1) to close the system. Consequently, 
taking (4) into account, we obtain a third integral equation that closes the system (3), 

Solving the first equation of (3) for z(a) and substituting the value obtained into 
(5), we write the last equation in the form 

s f (a) M (a) eeiuu da = G 
r mw--m s M, (a) ewicru da 

M (a) = -b ch UN + aI sh oHJl[poG (a)] 

(5) 

(6) 

(7) 

We will examine the properties of system (3) and 
operator of system (3) will-be completeiy continuous 
The left side (6) contains an integral operator that 
the integral equation of the contact problem for an 
cavity /4/. The operators on the right-hand side of 
within the framework of the constraints introduced. 

(6) for IZ.~~,E/B~L Inthis case the 
and small for sufficiently small a. 
exactly corresponds to the operator of 
elastic bilayered half-space without a 
(6) are completely continuous and small 
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The properties mentioned for system (3) and (6) enable us to use successive 
approximations for its solution. To a first approximation it follows from (3) that 

X(a) = L(cx) - 0 (I/E), Y (q) = t(q) i- 0 (1/Z) 

Substituting the values obtained into the right-hand side of (6) and retaining the 
principal terms of the expansion, we obtain an integral equation of the first kind 

>’ s i(a) hi_(a) eeiaYda = % f (u), u=I 
r 

(W 

to determine l(y) to a first approximation, and to which the solution of the contact problem 
for a bilayered half-space without a cavity reduces /4/. 

Effective methods exist for constructing the solution of equations of the kind mentioned 

/3, 5, 61. We use the method of /4/ to construct the solution. From the results of 
computations we approximate to (u) to a given degree of accuracy to a first approximation by 
an expression of the form 

N 

u*=u-c, to=const 

Then 

N 

&(a) = ntoeiaC 2 P,(- 1) k dk 

k.=tl 
2 [JO @VI 

Substituting the value of <(a) obtained into the right-hand side of (3), we have to 
a second approximation 

Substituting the last expression for T,,(G) into the right-hand side of (6), we arrive 
at the necessity for the solution of (8) with changed right-hand side, equal to 

L.,(a)=-2i - o,choH+yoshaH 
$,$(a) X 

11 + 0 (P) 

Therefore, application of successive approximations results in the need to construct the 
solution of a singular integral equation of the first kind at each stage of the process, to 
which the appropriate boundary value problem for a bilayered elastic half-space without a 
cavity reduces, whose operator part does not change from approximation to approximation 
while only the free term does. The correction terms have an order of smallness that increases 
from approximation to approximation and are determined, in practice, from the solution of the 
homogeneous problem for the approximate domain. 

It should be noted that for H==O all the expressions presented above degenerate into 
the appropriate expressions for the problem for a homogeneous half-space. The latter enables 
computations to be carried out for the correction components on the right-hand side of (8) 
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according to a single program for both problems. The essential difference in the properties 
of the integrand in the kernel of this equation governs application of a single approach to 
the construction of the solution (for instance 3). However, taking account of specific 
singularities of the kernel that determine the fundamental physical properties of the 
solution (the presence of singularities on the real axis, the domains of complexity of the 
integrand, etc.) is required for its practical realization, expecially at the stage of 
constructing the approximate factorization. 

1. 
2. 

3. 

4. 

5. 
6. 

The scheme elucidated for solving the boundary value 
problem was realized on an electronic computer by applied 
programs that enable the degree of influence of cavities of 
relatively small radius on the contact stress distribution under 
a stamp to be analysed. The relative error in the solution k 
due to the presence of a cavity is given in the figure as a 
function of the dimensionless vibration frequency for cavity 
depths of h = 20,50, 100 (curves I, 2, 3, respectively). 

It should be noted that for a sufficient distance of the 
cavity from the interface between the layer and the half-space 
(e/e, <O.i) and a relatively small contact zone (e-% > H) 
the correction component of the right-hand side of (8) does not 
lead, in practice, to distortion of the law of free term 
variation along the coordinate y. Only the magnitude of the 
factor for f (II) changes, which governs the perturbation of 
the contact stress magnitude for an insignificant distortion 
of their distribution law in the contact domain from approxi- 
mation to approximation. 
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